Synthesis Of Metal Acetylacetonates Biology

Essay add: 19-06-2017, 13:47   /   Views: 5

FTIR (Fourier Transform Infrared Spectroscopy) is useful for identifying types of chemical bonds in an organic or inorganic molecule such as its functional group by producing an IR (infrared) absorption spectrum. FTIR can be used for qualitative analysis for known compound and quantitative analysis for unknown compound that is either in solid, liquid or gaseous state. However, FTIR alone is insufficient to identify an unknown compound. Though, FTIR can still be used by supporting other techniques such as nuclear magnetic resonance, emission spectroscopy and mass spectroscopy in identifying unknown compound. FTIR is essentially useful in identifying the functional groups of a molecule. The IR spectrum obtained from analyzing a compound can be divided into two areas. The area between wavelength 4000 and 1000 cm-1 of the spectrum is the region where most of the functional groups show absorption bands, also known as the functional group region. On the other hand, the area between wavelength 1000 and 400 cm-1 of the spectrum is known as the fingerprint region. The chemical bonds in a molecule can be determined by interpreting the IR spectrum.

Generally, all substances can be classified into either one of three groups based on their magnetic properties. They are paramagnetic, diamagnetic and ferromagnetic. Those can be attracted to a magnetic field are known as paramagnetic. While those that repel a magnetic field are known as diamagnetic. The magnetic properties of the diamagnetic and paramagnetic substances can only be measured and observed when they are subjected to a magnetic field that is applied externally. Unlike paramagnetic and diamagnetic substances, ferromagnetic substances are able to retain their own permanent magnetic field.

ProcedureTo prepare tris(acetylacetonato)manganese(III), Mn(acac)3

5g (0.025 mol) manganese(II) chloride tetrahydrate (M. W. 197.90) and 1.3g(0.0095mol) sodium acetate trihydrate (MW 136.08) were dissolved in 200 cm³ distilled water.

21 cm³ of acetyacetone was added to the solution slowly.

The two phase system was treated with 1g/(50 cm³ of water) of potassium permanganate solution.

After a few minutes, 13g/(50 cm³ of water) of sodium acetate solution was added into the solution.

The solution was heated with stirring at 60°C for 30 minutes.

The resultant solution was cooled in ice-cold water and then the solid complex formed was filtered by suction filtration.

The complex was washed with acetone and it was dried by suction.

To prepare chloropentaamminecobalt(III) chloride, [CoCl(NH3)5]Cl2

6g ammonium chloride was dissolved in 40 cm³ conc. Ammonia in a 250 cm³ flask.

The solution was stirred continually. At the same time, 12g of finely powdered CoCl2.6H2O was added in small portions

The slurry in fume cupboard was warmed and 10cm³ of 30% hydrogen peroxide was added slowly from a burette with vigorous swirling.

When effervescence had ceased, 40 cm³ of concentration hydrochloride acid was added slowly.

The product was heated on a stream bath for 15 minutes.

The product was cooled, filtered and washed with 25 cm³ of ice water, then with 25 cm³ of 6M HCl and then alcohol.

The product was dried at 110°C for an hour.

To prepare aquabis(acetylacetonato)oxovanadium(IV), [VO(acac)2(H2O)].

2 g of vanadium(V) oxide was weighed out into a 250 cm³ conical flask.

A mixture of 5 cm³ of distilled water, 4 cm³ of concentrated sulphuric acid and 10cm³ absolute ethanol were added into the vanadium oxide.

The mixture was heated under reflux for around 1 hour.

The solution was filtered and the filtrate was transfer into a 250 cm³ beaker.

5 cm³ of acetylacetone was added into the solution and then the solution was neutralize by adding 16% w/v of sodium carbonate.

The precipitate was washed with cold methylated spirits and cold ethanol using suction filtration.

The product was dried by suction and the yield was measured.

Half of the product was used for recrystallization.

The half product that for recrystallization was dissolved in a minimum volume of dichloromethane.

The impurities were filtered and diethyl ether was added until precipitation had occurred.

The product was filtered and it was washed with ether and also air dried.

ResultMass of product yieldedComplexMn(acac)3[CoCl(NH3)5]Cl2[VO(acac)2(H2O)]Mass of sample tube and product (g)

16.9552

20.8565

15.2987

Mass of sample tube (g)

13.2546

13.2614

13.2515

Mass of product (g)

3.7006

7.5951

2.0472

Percentage yield (%)

33.33%

52.29%

131.48%

Percentage yield of product

tris(acetylacetonato)manganese(III), Mn(acac)3

4Mn2+ + MnO4- + 15CH3COCH2COCH3 5Mn(CH3COCHCOCH3)3 + 4H2O + 7H+

4mol of Mn2+ will produce 5mol of Mn(CH3COCHCOCH3)3

0.0250 mol of Mn2+ will produce 0.0313 mol of Mn(CH3COCHCOCH3)3

Mass of Mn(CH3COCHCOCH3)3

Article name: Synthesis Of Metal Acetylacetonates Biology essay, research paper, dissertation